Identifying optimal measurement subspace for ensemble Kalman filter
نویسندگان
چکیده
منابع مشابه
Optimal Localization for Ensemble Kalman Filter Systems
In ensemble Kalman filter methods, localization is applied for both avoiding the spurious correlations of distant observations and increasing the effective size of the ensemble space. The procedure is essential in order to provide quality assimilation in large systems; however a severe localization can cause imbalances that impact negatively on the accuracy of the analysis. We want to understan...
متن کاملResampling the ensemble Kalman filter
Ensemble Kalman filters (EnKF) based on a small ensemble tend to provide collapse of the ensemble over time. It is shown that this collapse is caused by positive coupling of the ensemble members due to use of one common estimate of the Kalman gain for the update of all ensemble members at each time step. This coupling can be avoided by resampling the Kalman gain from its sampling distribution i...
متن کاملMeasurement bootstrapping Kalman filter
In practice, many estimation problems rely on on-line solutions, hence recusive methods are necessary. Tradition estimation approaches for linear systems subject to Gaussian noise are based on the Kalman filter and its improving algorithms. Based on the realization construction of state prediction and measurement update, Kalman filter can obtain the optimal estimation of state under the linear ...
متن کامل4-D-Var or ensemble Kalman filter?
We consider the relative advantages of two advanced data assimilation systems, 4-D-Var and ensemble Kalman filter (EnKF), currently in use or under consideration for operational implementation. With the Lorenz model, we explore the impact of tuning assimilation parameters such as the assimilation window length and background error covariance in 4-D-Var, variance inflation in EnKF, and the effec...
متن کاملThe Hybrid Local Ensemble Transform Kalman Filter
Hybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an EnKF [1][2][4][5][8], we take the opposite perspective of augmenting an operational EnKF with information from a simple 3D-Variational (3D-Var) method [7]....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics Letters
سال: 2012
ISSN: 0013-5194
DOI: 10.1049/el.2012.0833